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LETTER TO THE EDITOR 

A six-vertex model as a diffusion problem: derivation of 
correlation functions 

Daniel Kandelt, Eytan Domanyt and Bernard Nienhuisi 
t Department of Electronics, Weizmann Institute of Science, Rehovot 76100, Israel 
$. Institute for Theoretical Physics, Valckenierstr. 65, 1018 XE Amsterdam, The Netherlands 

Received 2 May 1990 

Abstract. A cellular automaton which describes diffusion of particles with exclusion in 
one dimension is shown to be equivalent to a six-vertex model on a critical line. The 
arrow-arrow correlation function of the six-vertex model is calculated exactly on this line 
using a transfer matrix method. 

A family of problems dealing with shrinking domains of king spins at ?’ = 0 has been 
studied recently [l]. For a particularly simple geometry, that of a single corner of a 
domain of up spins in a sea of down, some interesting equivalences were established. 
Firstly this problem was shown to map onto that of many particles, with hard core 
repulsion, diffusing on a one-dimensional chain. This soluble problem [2] was then 
reformulated in a manner that utilises parallel dynamics, thereby turning it into a 
one-dimensional stochastic cellular automaton. Such an automaton, however, is 
equivalent to an equilibrium problem in d = 1 + 1 dimensions [3,4]. It was shown that 
the resulting 2~ equilibrium problem is that of the six-vertex model on one of its critical 
manifolds [ 5 ] .  For completeness’ sake we reproduce these mappings in full detail 
below, and then proceed to use them in order to calculate the arrow-arrow correlation 
function of this critical six-vertex model. 

The symmetric six-vertex model may be considered the prototype of soluble vertex 
models. Many of the techniques for exact solutions have been developed or are 
demonstrated first on the six-vertex model [5-71. Nevertheless, not very much is known 
exactly about its correlation functions, except in the free fermion limit [8]. Even when 
the eigenvectors and eigenvalues of the transfer matrix are known, the necessary 
analysis to extract even a two-point correlation function is a difficult task which has 
not been successfully completed. Of course in the regimes where the model is scale 
invariant, the large distance behaviour of the two-point functions is calculable with 
the aid of the renormalisation group, and of the more-point correlation functions with 
the use of conformal invariance. These results, however, do not contain information 
about the short distance behaviour, and are applicable only in the scaling regimes, In 
the present letter we show that the arrow-arrow correlation function can be calculated 
without difficulty in a subspace of the general symmetric six vertex model, in which 
the model is not conformally invariant. Note that some correlation functions were 
calculated previously on disorder subspaces for the two- and three-dimensional Ising 
models [3,9]. 
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Consider a problem of many particles that execute random walks on a linear chain 
of N""" sites. A hard-core interaction prevents occupation of any site r by more than 
one particle. The model we consider has parallel dynamics, with rules defined as 
follows. First, pair all neighbouring sites; this can be done in two ways, with either 
the odd or even indexed sites at the left side of every pair. These two ways of partitioning 
a linear chain are denoted, respectively, by A and B in figure l (a) ,  where presence 
of a particle is represented by a black dot, and empty sites are denoted by open circles. 
We choose pairing of type A at odd time steps ( 2 t  + 1) and B at even ones ( 2 t ) .  The 
dynamic process allows, at every time step, motion of a particle within the pair to 
which it belongs at time t .  If both sites of a pair are occupied, or both are empty, the 
state of the pair does not change. If one site is occupied and the other empty, the 
particle moves to the empty site with probability p ,  or stays where it was with probability 
1 - p .  These (stochastic) rules are applied, in parallel, to all paired neighbouring sites. 

0' I c+pe 

Figure 1. ( a )  Two different partitions, A and B of a linear chain, occupied by particles 
(black sites) and holes (white sites), into paired neighbouring sites. ( b )  Representation of 
particles (holes) by up (down) pointing arrows. Every horizontal cut presents a snapshot 
of the particles at a given time step. The arrows are placed on line segments; segments 
associated with paired neighbouring sites meet at a vertex above the current time step. (c )  
At each vertex an exchange of particles and holes may take place, giving rise to a new 
configuration. The probabilities of all possible processes are identified as the standard 
weights of the corresponding six-vertex model. 

The resulting probabilistic cellular automaton is equivalent to an equilibrium 
problem in d = 2 dimensions, which turns out to be a particular case of the six-vertex 
model. To show this, we first review the geometric aspects of this mapping. The 
coordinates ( r ,  t )  of site r at time t are placed at the centres of the edges of a square 
lattice, as indicated in figure l (b) .  The r-axis is along one of the diagonals of this 
square lattice, and the t-axis (with time running upwards) along the other diagonal. 
The edges that go through two neighbouring points ( r ,  t )  and ( r *  1, t ) ,  meet above 
them if they belong to the same pair at time t. Hence at the vertices, where edges meet, 
exchange of a particle and a hole that belong to the same pair can take place. As we 
move up in time, the edge associated with a given site r will meet, alternatively, either 
the edge associated with site r - 1 or r +  1. This reflects the alternating pairing of site 
r at odd/even time steps. 
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Next, we demonstrate a mapping between particle and arrow configurations. To 
specify any spacetime history of the diffusing particles, an occupation number must 
be assigned to every point, n( r, t )  = 1 (occupied) or n( r, t )  = 0 (empty). There is a 
one-to-one correspondence between all possible n ( r ,  t )  assignments, consistent with 
our dynamic rule, and the arrow configurations of the six-vertex model. To realise this 
correspondence place on each site ( r ,  t ) ,  with n ( r ,  t )  = 1, an arrow that points up (along 
its edge), and for n( r, t )  = 0 an arrow that points down. Conservation of particles, built 
into our dynamic rule, translates to having an equal number of up arrows leaving a 
vertex from above as incident on it from below. This, however, ensures that only those 
arrow configurations that are allowed by the six-vertex model will occur. 

The $nul step necessary to establish the mapping is to show that any spacetime 
history of particle configurations, i.e. occupation numbers n ( r ,  t ) ,  will have the same 
statistical weight as that of the corresponding six-vertex model. It is easy to see that 
this is indeed the case if the following values are chosen for the (standard) vertex 
weights (see figure l (c ) :  

a = l  b = p  c = l - p .  ( 1 )  

These weights correspond to a six-vertex model on one of its critical lines, a = b + c. 
This line is a limiting case ( d  = 0) of the disorder [4] variety a + d = b + c of the 
eight-vertex model [ 5 ] .  

The dynamic process described above is realised by a transition probability matrix 
(that plays the role of the transfer matrix, in a diagonal direction, for the six-vertex 
model). This matrix acts on occupation microstates denoted by IA)). A basis of such 
states is formed by the direct products of single-site occupation states, characterised 
by occupation numbers { n f } :  

1'4)) = n 1.3. 
r 

The transfer matrix can be written as 

The matrices operating at odd and even times are given by 

with 

T(1, 1; 1, 1 )  = T(0,O; 0,O) = 1 

T(1,O; 0,  1 )  = T ( 0 , l ;  1 , O )  = p  (4b) 

T ( l ,  0; 1,O) = T(0, 1; 0, 1) = 1 - p .  

It should be noted that whereas both Todd and T'"'" are symmetric, T i s  not symmetric. 
We now turn to calculate a spacetime correlation function for the diffusion model, 

which is trivially mapped into its six-vertex counterpart. We wish to calculate the 
quantity 

G(r, t )  = (.(c t )n(O,  0)). ( 5 )  
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For the six-vertex model the brackets mean average over an equilibrium ensemble. In 
the corresponding dynamic problem two averages are implied. First, average over 
realisations of all possible time developments, each with its proper statistical weight, 
starting from a given initial ( t  = 0) state. Second, average over an ensemble of initial 
states that is stationary with respect to the dynamic process. The equilibrium counterpart 
of this second averaging merits a brief explanation. In the equilibrium calculation one 
normally chooses in (5) two sites (0,O) and ( r ,  t )  that are far from all boundaries. 
Hence a standard calculation of G(r, t )  has the form 

where 6 is an operator, and IO)) is that eigenvector of the transfer matrix which belongs 
to its largest eigenvalue. In the dynamic view of the problem, IO)) represents the ensemble 
of initial states to be averaged over. Since the transfer matrix of the dynamic problem 
is one of transition probabilities its largest eigenvalue is 1, and therefore the ensemble 
represented by IO)) is stationary, in that 

G(r, t)=((O16(r9 m o , o ) l o ? )  

TIO)) = 10)). ( 6 )  
The stationary state of a system of N particles is 

where X =  (";"") is a normalisation constant. To see that (6) holds, operate on (7) 
with Todd and next with T'"'", as defined by (4). Note that since T does not change 
the total number of particles, it 'moves through' the &function in (7). In this way one 
can verify that 10)) is also an eigenstate of each of the operators Todd and T"'" separately. 

Similarly, it is easy to show that the corresponding left eigenvector of T, which has 
the largest eigenvalue is given by 

with normalisation ((OlO)) = 1. The correlation function we wish to calculate is given 
(after an even number of time steps t )  by 

Here f i ( r )  is a number operator whose action on a microstate IA)) is defined as 

i.e. it projects from any state the part in which site r is occupied. By definition of IO)) 

G ( r, t ) = (( 01 6 ( r ) T1'2 fi ( 0 )  IO)). 

fi(r)lA))= nA(r)lA)) (10) 

(9) 

and ((01, 
1 

G(r, t )  =T ((Blfi(r)T'"fi(O)(A)) (11) 
B, A 

where the sum is over all microstates with N particles. This has the desired dynamic 
interpretation: from the stationary ensemble of initial states Z [A)) we project out those 
for which n(0) = 1, i.e. a particle is present at r = 0. These initial states are propagated 
an even number o f t  time steps, after which those microstates, which contain a particle 
at r, are projected out. This process is then summed over all possible final states ((El 
of the system. To evaluate G(r, t ) ,  we introduce the following states: 
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in terms of which (9) becomes 

G(r, t )  =((Oln^(r)T''*10)). (13) 
Note that here IO)) = Ir = 0)) = n^(O)lO)). 

We follow standard strategy, assuming that IO)) can be expanded in the form 

lO))=C b0"lK) (14) 

TIK)  = A ( K ) ~ K ) .  (15 )  

G(r, t ) = C  C(r ,  K ) ~ o ~ [ A ( K ) I " '  (16) 

C(r ,  K )  =((oI;(r)lK). (17) 

K 

where I K )  are (right) eigenfunctions of T, e.g. 

Then G(r, t )  is given by 

K 

where C(r,  K )  is a matrix element, 

We first calculate the eigenvalues A ( K )  and the right eigenvectors I K ) .  

to get 
Acting with T, as defined by (3) and (4), on I r ) )  given by (12), it is straightforward 

(18) Tlr)) = (1 -p)*lr)) + p (  1 -p)[lr + 1 ) )  + Ir - l ) ) ]  +p'I r - 2( -l)'(r))) 
where we introduced a parity parameter 

for r odd 
for r even. 

A ( r )  = 

The last term in (18) reflects the fact that due to our positioning of the chain, a particle 
on an odd site can move in two time steps two units to the right, but only one to the 
left. For an even site the situation is reversed. We can now combine states I r ) )  to 
generate eigenstates of T, of the form? 

/ 2  ""X 

I K )  = eiKr[uj2r- I ) ) +  u12r))l. 
r = l  

We find that 
the equation 

(20) is indeed an eigenfunction (15 )  of T, provided U, U and A satisfy 

The eigenvalues A ( K )  are given by the solutions of 

A2-2A[(l - p ) * + p *  COS K ] +  ( 1  -2p)' = 0. 

As K + 0, for p < 1 the high branch can be written as 

This result already suffices to show that asymptotically ( t  >> 1 )  one has 

a result that reflects the diffusive nature of the correlation function, and has the algebraic 
decay (albeit very anisotropic-see below) of a critical correlation function. 

G(0, t )  - t-"2 (24) 

t With periodic boundary conditions K =0, + 1 2 w / N m n x ,  1s NmUx/2. 
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In what follows we concentrate on evaluating G (  r, t )  for the particular case p = f . 
For this value the algebra simplifies considerably, and we have reasons to believe that 
for p # 1 qualitatively similar results are obtained (as long as special points such as 
p = 0, 1 are avoided). 

For p = f the two solutions of (22) are A ( K )  = 0 and 

A ( K ) = ~ ( ~ + c o s  K). (25) 

The eigenstates corresponding to the A = O  solutions obviously (see (16)) do not 
contribute to G(r, t ) .  The eigenvector that corresponds to (25) is 

/ 2  "ax 

I K )  = eiKr[12r- 1))+eiK12r))]. 
r 

To obtain G(r, t )  by (16) we have to evaluate bo,, the coefficient of [ K )  in the expansion 
of IO)). In order to calculate this coefficient we need to construct states ( K I ,  such that 

( K ' I K )  = S ' ( K ' ,  K )  (27) 

bo, = (KIO)). (28) 

since then we have 

To do this, we first define states 

where q = N/ N""". It is easy to see, using (12) and (29), that 

((r'ir)) = 8(r', r) .  (30) 

The form (29) of the states ((rl is not going to any role in what follows. We are going 
to use the existence of such states and their property (30), but not their explicit form. 
The actual form of the states is given here only for the sake of completeness. 

To obtain states with the property (27), we construct from ( ( r l  left eigenstates of 
T, which have the form 

( K I  =E e-iKr[C((2r-ll+6((2rl] (31) 
r 

where (Zi, 6) is the left eigenvector of the 2 x 2 matrix that appears in (21). 
For p = 4, the eigenvector that belongs to the non-vanishing eigenvalue (25), has 

C ( K )  = C ( K ) ,  and the normalisation factor C ( K )  is determined, using (26), (30) and 
(311, by 

so that 

1 +e-'" bo, = C ( K )  = [fN"""( 1 + eiK)]-' = 
2N"""A ( K ) '  

(33) 

Finally we have to calculate the matrix element C(r,  K) ,  given by (17). It has the form 
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which involves matrix elements that are easy to evaluate: 

((01 n^( r>l r") )  = ((01 n^( r )  n^( r") 10)) 

= q2+q(1  - q ) 6 ( r ,  r") (35) 
where we assumed the thermodynamic limit N, N""" + 00 keeping q = N /  N""" fixed. 
For p = we have U = 1, U = eiK, and find that 

(36) 

where A ( r )  = 1, 2 is the parity parameter (19). Finally substituting ( 2 5 ) ,  (33) and (36) 
in (16) we get 

~ ( r ,  K )  = q'"a'a(K, 0) + q(1- q )  e("2)'K[r+A(r)l 

The first term is the squared average density of particles. The second term measures 
the correlation between an 'injected' particle, at r = t = 0, and presence of an extra 
particle at r, t. This 'net correlation function,' Gc(r, t ) ,  is written, for the Nmax+co 
limit as an integral 

Using trigonometric identities one can write the net correlation function in the form 

This integral can be solved after using the binomial expansion to simplify the integrand. 
The correlation function then takes the form: 

As expected Gc(r, t )  vanishes outside the light cone defined by t = r + A .  Inside the 
light cone ( t  3 r + A )  we get a simple expression for the net correlation function: 

To calculate the long time and large distance limit of Gc(r, t )  we use the Stirling 
formula to approximate factorials in expression (40). Assuming that the distance r is 
small compared with t we obtain the leading behaviour of the net correlation function: 

e - r= /2 r  

GJr,  t )  - q(1- 4 )  ~ fi' (41) 

To summarise, we calculated the arrow-arrow correlation function of a critical six- 
vertex model exactly. We showed that in the long time and large distance limit it 
behaves as a simple random walk, as one may expect from the solution of the equivalent 
dynamic model [ l ,  21 (diffusion of particles in one dimension with exclusion). 

This work was supported in part by the US-Israel Binational Science Foundation. ED 
thanks members of the Laboratoire de Magnetisme des Surfaces, Universitb Paris VII, 
where a first draft of this letter was written, for their hospitality. We thank D Mukamel 
and H Giacomini for helpful discussions. 
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